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.1. In troductior~

Models of protection in computer systems usually possess two coxnpo-

nents, a finite, labeled, directed two color graph representing the

protection state of an operating system and a finite set of graph trans—

formation rules with which the protection state may be changed. Harrison,

Ruzzo and Uliman demonstrated [1] that the uniform safety problem is

undecidable , i.e., no algorithm could decide, given both a protection

graph and a set of transformation rules, whether an edge with a particular

label is ever added to the graph. The Take-Grant Model [2 ,3,4J has been

developed in response to this negative result in order to study such

questions for a particular set of transition rules. Linear-time

algorithms have been formed for safety-like problems [2 ,3J for the

Take-Grant transition rules. Although the model is simple enough to

permit linear time decision procedures, it is rich enough to implement

many sharing relationships [4J. In this report we concentrate on

the formal development supporting the motivational and interpretive

treatments given in 4,5].

First , we characterize the class of graphs that can be created with

the Take—Grant rules. Next, the cav..steal predicate , first introduced

in 4T in a limited form , is developed in full genera. lty making it

applicable to the common situation of ‘ stealing files.” The necessary

and sufficient conditions for ~~st~ol to be true can still be tested

in linear time.

Another main topic is that of quantifying the amount of “coopera-

tion ” required to share or steal rights. By the amount of “cooperation”

we mean the number of users (i.e., subject vertices) required to

_______ ___________________________________________________________________________ —~~— ~~~~~~~~~
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initiate rules in order for a particular edge to be added to a graph.

This concept was called “conspiracy” in [2] and was studied in [6],

where a lower bound is derived . The bound is based on edge incidence

and is not tight. For example, the class of graphs of the form

p • ~~~~~) t t t ) 
•

t t t  t

require n+2 conspirators for p to acquire the ~ edge to q, but in [6]

the lower bound for these graphs is 0. The present formulation uses

the more flexible notion of “spans” to assess protection graphs. Exact

conspiracy measurements for arbitrary protection graphs are derived and

an algorithm for discovering minimum conspiracy is presented.
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The Take-Grant ModeZ

The following development of the Take-Grant model follows earlier

treatments [2 ,3,4] and differs in only inessential ways.*

Fix a finite alphabet of labels R = {r
1
,...,r } u {t,g) called

rights containing two distinguished elements; “t” is mnemonic of “take”

and “g” is mnemonic for “grant.” A protection graph is a finite, directed ,

loop—free, two color graph with edges labeled by subsets of R. (Braces

around subsets are elided.) Solid vertices, •, are called subjects,

empty vertices, 0, are called objects ; vertices of either type are

denoted by e.

Four rewriting rules are defined to enable a protection graph

to change:

Take : Let x, y, and z be three distinct vertices in a
protection graph G such that x is a subject. Let there
be an edge from x to y labeled y such that “t”  C y ,  an
edge from y to z labeled B and a £ B. Then the ~~~rule defines a new graph G’ by adding an edge to the
protection graph from x to z labeled a. Graphically,

~~~~~.w ce4 U
The rule can be read : “x takes (a to z) from y.” Ju~tific~.ti~~

_

r~v~~: Let x , y, and z be three distinct vertices in a B y _

protection graph G such that x is a subject. Let there Djstri 1 
~
-:
~~

be an edge from x to y labeled y such that “g” ~ -y , 
•

an edge from x to z labeled B~ and a ~ E. The ,ra’:;
rule defines a new graph G’ by adding an edge from k.
y to z labeled a. Graphically, Dist ~~ .

The rule can be read : “x grants (a to z) to y. ”

*Specifjcally , the “call” rule of [2]has been dropped , r and w (used in
[2]), are replaced by t and g, respectively , and “inert” rights [5 ,6]
are permitted.

-- ~~~—~~ -.-——. - ~~~~~~~~~~~~~ ~~~~~~~
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Create: Let x be any subject vertex in a protection graph
G and let a be a subset of R. Create defines a new
graph G’ by adding a new vertex n to the graph and an
edge from x to n labeled a. Graphically,

• •
S subjectThe rule can be read: “x creates (a to) new . } n.

object

Ret~iove: Let x and y be any distinct vertices in a protection
graph G such that x is a subject. Let there be an edge
from x to y labeled B , and let a be any subset of rights.
Then rem ove defines a new graph G’ by deleting the a
labels from B. If B becomes empty as a result, the edge
itself is deleted. Graphically,

•x y x y

The rule can be read: “x removes (a to) y.”

In these rules, x is called the initiator.

Application of rule p is denoted by Gj 
~ 

G’. The reflexive

*transitive closure of this relation is denoted GI G’ . The notation

x —
~~

- - y abbreviates “there exists an edge from x to y in G labeled y
and c~ ~ 

- .“ Figure 1 illustrates* the definitions. Although there

are additional concepts to be introduced the development thus far is

adequate for proving a characterization result.

3. ~~~~~~~~~~~ 7r~~t ~~~~~~~ -~rcz~hs

In [4] it was argued that the protection graphs actually used in

an operating system will be generated by a fixed set of rule protocols ,

e.g., by the operating system supervisor, editors, compliers, etc.

Hence, it is important to know what class of graphs can be generated by

5Dashed lines are used in illustrations as a visual aid. Also, even
though there is only one directed edge from any vertex a to any vertex
b, we occasionally draw two to emphasize changes in labelling . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~- -~~--~~ — - -



create t:r~II~

~grant

~grant

take

Figure 1: Vertex a acquires g rights to b , i.e., g is added to the
label on the a to b edge. The rule applications may be read :

a creates (tg to) new object d ,

a grants (g to d) to c ,

c grants (g to b) to d ,

a takes (g to b) from d.
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the Take-Grant rules. Since vertices cannot be deleted and all of the

rule applications require that the initiator be a subject, an “all

object” graph is impossible. A complete characterization is presented

in the next the~ - .~m.

Theorem 3 . 1:  Let G0 be a protection graph containing exactly

one subject vertex and no edges. Then G
0f— G if and only

if c is a finite, directed, loop-free, two color graph
with edges labeled from subsets of R such that at least
one subject has no incoming edges.

Proof: Let v be the initial subject, and G
0}— 

G. G is

obviously finite, directed, loop—free and two colored with the indicated

labelling. Since vertices cannot be destroyed, v persists in any graph

derived from G
0
. Inspection of the rules indicates that edges cannot

be directed to a vertex that has no incoming edges. Conversely, let G

satisfy the requirements. Identify V with some subject x
1 
with no

incoming edges and let G have vertices x1,x 2 , . . . ,x . Follow these

steps:

(3.1) Perform “v creates (a u {g} to) new x . for all

x . (2�i�n) where a is the union of all edge labels

incoming to x . in G;

(3.2) For all xj x
j 
such that x. —~~---I- x . perform “v grants

(
~ to x.) to X . ; ”

1

(3 .3) If B is the (possibly empty) set of edges from x
1 to

x . in G , then execute “v removes ( ( a  u {g))- B) to x ”
1 1

for 2�i�n .

The result follows by a simple induction. 0

L ~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~
..— --— .

~~~~~~~~~~~-~~ -~~-
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In the next corollary , “component” means connected component.

Corollary 3.2: A k component, n edge protection graph can be
constructed from a single subject in t rule applications ,
where 2(k—l)+n � t � 2(k—l)+3n.

Proof: To see the lower limit, note that rules (3 .1) and (3.3).

are each required for k-l of the components; the remaining component

contains v. Each edge requires at least one application of (3.2). To

see the upper limit note that rules (3.1) and (3.3) are sufficient to

form one vertex in each component. For each edge charge one applica—

tion of (3.1) to create its source vertex, one application of (3.2)

to assign the edge to the target, and, possibly, one application of

(3.3) to delete the edge from v. 0

Clearly, the bounds are both achievable as the following example

illustrates:

~~~~~~~~ 3.3:

(a) 
~create 

~~~~~ 
‘crea~e 

‘
~~~~ create

remove N9~~~~

V V gr v gr V gr
(b) . t create 

S C Fcreate ~ ~grant

V gr V

I- • Iremove remove

- ~~~~~~~~~~~~~~~ 
—

~ 
-
~~

- 
~~

— — --- - -—
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. e.~~’~~es and earlier r~’-~u its

Several properties ~~ paths will be extremely important in our

later development. A sequence of vertices x
0
,.. .,x is a path in G if

x
L G ~ x~~1 

or x~~1 C O~i<n . Thus paths are defined independ— : 1
ent of direction . Vertices p and q of G are tg—connected if there is

a path p = x
0
,...,x = q and the label a on the edge between x . and

x . +1 
contains t or g. An island of G is a maximal , tg—connected subject—

only subgraph of G.

The ed~ae al p habet is composed of four letters ~~~~~~~ Let

x - y (resp. x y) then the letter t (resp. ~) is associated

with the edge. Words are associated with paths in the obvious way ;

t tg g -~~~~-~~-for example , I ~•- • • has the words ttg and tgg associated

with it. A path x 0 , . . ., x is an ~n-~tial span if it has an
-~~ * -~

associated word in {t g}, it is a ~erri na -  s~ a~ if n>O and it has an

.+ *
associated word in {t }, and it is a bridac if (a) n>1 and x and x

0 n
.+ * .~- *  _,. *~~t. *- * ~+ **.._ *

are subjects , (b) an associated word is in { t , t , t gt , t gt

ar,~ ( C )  the x . are objects (ici<n) . Note that initial and terrninai

spans have an orientation , i.e ., x 0 is the s~urc~ of the spans. We

say x
0 

initially or terminally spans to x .

Ir. order to share information in the protection system , an edge

pointing from the recipient to the information shared must be added to the

protection graph by means of a sequence of rule transformations of the

graph . Accordingly , we may def ine for a set of r ights a and vertices p

and q of a protection graph G
0
, the predicate

can’share (a,p,q ,G0) ~ there are protection graphs
such that G

0F 
* 

G and p q.

~~~~~~~~~~~~ - -~~~~~~~~~
- -

~~~~~~~~ • ~~~~~~~~~~~~~~~~~~~~~~ — - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --~~~~ -- -~~ - - - -
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When interest is restricted to protection graphs containinq only subjects ,

we have

Theorem ~.1 [2]: For a subject only protection graph G
0
,

can~ share (c~,p,q,G0
) is true if and on iy if the fol lowing

two conditions hold .

~OY~~~~~o~2 2: There exist vertices s
1
,. . , s such tha t for

each i , l�i�u; ~~~ • G0 
- q and a = U ... u

p is tg—connected to each s,, l�i�u .

The conditions under which can ~s7za re holds for general protection graphs are

somewhat more complicated. In particular , Condition 1 must b~

augmented by Condition 3:

~~~~~~~~~~~~~ 3: There exist subject vertices p ’ and
sj,...,s~ such that

(a) p = p ’ or p ’ initially spans to p;
(b) s. = s! or s~ terminally spans to S . ;

1 1 1 1

and Condition 2 must be recast in terms of bridges and islands :

~~~~~~~~~ - :  For each (p ’ ,s~ ) pair (l�i�u) there exist

islands I ,...,I ~v�1) such that p ’ C I , 5~ c I
1 v 1 1 V

and there is a bridge from I~ to ‘j+l 
(~ �j<~~~

Clearly, Condition 4 is simply Condition 2 for the case v = 1. The

counter part to Theorem 4.1 for general protection graphs is

Tz~or~~ ~~~~~~ [3]: The predicate can•share(cL,p,q,G
0
) is

true if and only if Conditions 1, 3 , and 4 hold .

As corollaries, it is known that there are algorithms operating in

linear time in the size (V+E) of the graph to test both predicates .

___________________________________________________________________________ —..- ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~
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The can’share predicate presumes perfect cooperation from all

users (i.e., subjects). The can ’steal predicate must capture the

notion that a subject vertex acquires a new right without any cooperation

from an original owner . Formally ,  for two vertices p and q in a protection

graph G
0
, and right a, define

can.steai(a ,p,q, G
0
) ~ — p q and there exist protection

0
graphs G

1
,..., G

n 
such that

(5.1) G
0 F— G1 H~— ... F— Gn;

1 2 n

(5.2) p q, and

(5.3) if s q then no p . has the form

“s grants (a to q) to X ”  for any X . ~ G 111�j�n .

Clearly, p, q and s must be distinct since these are protection graphs .

T c r ~r’~ .i~.2 :  For vertices p and q in a protection graph ,
G
0 

and right a, can•steai-(a ,p ,q, c3
0
) if and only if

the conjunction of the following conditions holds:
a

(1)

0
(ii) there is a subject p ’ such tha t p = p ’ or

p ’ initially spans to p,

(iii) there is a vertex s such that s q and

s~~ r~~(t,p,s,G0
). 0

Prco:’: (~~) Suppose can~sts~2 ( a ,p,q ,G
0
) is true . Condition Ci) of

the theorem holds by definition. Let n be the smallest integer such that

G
0H— 

G
1H— 

... ~
— G and p q. If p is a subject , (ii) holds ,p

1 
p
2 

n 
n

so suppose p is an object. If no p ’ exists , then for all x can s h a r e (a ,p , x ,G0
)

is false , contradicting (4.2). Similar reasoning assures the existence
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of x such tha t s —
~~

---
~~ q, so we concentrate on showing the necessity of

can~share (t ,p , s ,G
0
). Let T = {sls —

~~
-—+ q}. Let i be the least index

such that in C. there is a vertex z
1
, and z

1 ~~~~~ but z
1 
~i 1  

q.

The operation causing this edge to be added cannot be a grant, since

can- steal is true and those vertices pointing to q with a labels in

G .1  are the same as those in G0
. The operation must be a take of the

form: 

a
t a

S q z
1 

S q

for some s C T. Let z
2
,...,z~ = p be the other vertices (in order of

appearance) that are assigned a labeled edges to q in the derivation.

Then an alternative derivation could be formed where each rule of the

form

z. takes (a to q) from x .

or

x .  gran ts (
~ to q) to z.

is replaced by

z. takes (t to s) from x ,
j

or

x . grants Ct to s) to z.,
j  j

respectively , for 2~j�i , provided x , = z~~ 1. But this latter equality

most hold since the derivation is a shortest one. Thus, can•ahare (t,p ,s ,G0
)

proving that (i i i )  holds .

(aa ) Suppose the three conditions hold. Then if p is a subject, the

- —
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theorem is immediately satisfied since p can take (a to q) from s once

it gets the t right to s. If p is an object then can~8har e(t ,q, s ,G0
)

implies there is some subject p ’ initially spanning to p and

can~share ( t ,p ’ , s ,G0 ) .  If — p ’ —
~~

---
~ q tl,en p ’ can take the right (cx to q)

0
from s and grant it to p. If p ’ —~~---i . q then the following sequence enables

p ’ to form a surrogate vertex n to transmit the right (a to q) to p

given that p ’ s and p ’ —~~ —~~ p:
0 i

p ’ creates (g to) a new subject n;

p ’ grants (t to s) to n;

p ’ grants (g to p) to n.

(These steps are legal even if a=t.)

Then n completes the task with operations:

n takes (a to q) from 5;

n grants (cx to q) to p.

This is a wi tness for ca n ’s tea l (a , p , q , G0
) proving the theorem.

~
‘orciZary 5.2: There is an algorithm to test the can~steai

predicate that operates in time linear in the size of the
protection graph.

e. Consp iracy

In this section we are concerned wi th the amount of “ cooperation ”

required to effect the sharing or stealing . This cooperation has been

called “conspiracy” [21 and for a given sequence of legal rule applica—

tions c
l~~

.
~~~~
:
~n

P it is simply l { x lx  initiates ç~~} t . Our concern in

this section is determining for a given true predicate can •Bhar e (a ,p ,q , G0
)

the minimum conspiracy required to produce a Gn that is a witness to its

truth . We will be able to find the exact value for arbitrary protection

graphs.

~iiiL --~~~~ —-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~. - - . .. --
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Let G be a protection graph and y a subject vertex, then the

access-set with ~ccus ~.

A (y )  =def {y }  u { x ly  initi all y spans or terminally spans to x}.

Clearly , for a given focus y in C, A ( y )  in unique . Access sets will be

used to measure the size of the conspiracy .

For the remainder of the section, we restrict our attention to

protection graph G with vertices p = x
0

, . . . , x = s, x~~ 1 = q. An edge

in G either forms a tg—connection between x11 and x .  (lsi �n ) or is
a q. We suppose that can•share (cx ,p,q ,G) holds.

Say that a vertex is a tg-sink if

(6.1) the vertex is x
0 and the only letter associated with the

x0 ,x
1 

edge is

(6.2) the vertex has incident edges whose only associated word

~~4 ~ .4.
is in {tt ,gg} or

(6.3) the vertex is X and the only letter associated with the

x 1
, x edge is

The motivation for this definition will become evident in the claim

of Theorem 6.1.

An ~~~~~~-s~~ cover ~or ~~ t :  ‘.~cz~ ~~~~~~~~~~~~~~~~~~ is a family of sets

such that for each i (l~ i�n) vertices {x . 1 , x .~~ c A(y.)

for some j ,  l�j~ u. Note that the subject requirement of access—sets

might prevent certain tg—connected paths from having a cover . It will become

clear from the subsequent theorems, however, that a tg-path has an

access—set cover if
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and only if sh~u’~ (cz,p,q,G0
) is true. Finally, an access set cover

is said to be ~~~~~~~ if it minimizes u over all access set covers.

First we establish a lower bound.

‘heo rer- e . :  Let G
0 
be a tg-connected path p = x

0
,...,x = s

such tha t can~a ha r e(a ,p , q, G0
) is true . Let k be the

number of access sets in a minimal cover of G
0
, and . the

number of tg— si nks . Then k+ c. initiators are necessary .

:rc;~’~: Let 
~~~~~~~~~~ 

be the minimal set of rules required for a

minima l set of initiators y
1
,...,y to implement can ehare (a ,p , q , G0 ) .

To see that the access sets A(y
1
),...,A (y) with initiator foci

,y cover G
0
, note that x ~ A (y.) for all i implies that no initiator

can take from or grant to x, so x and its incident edges can be removed

without affecting rules 
~l

’
~~~~

’ v~ 
But this violates the connec tedness

Condi tion 4 of ~~~~~~~~~ Thus , the access sets A(y
1
),...,A(y ) at

least cover G
0
.

Every vertex x . that is a tg—sink must be an initiator .

1~~~
-
~”-: First note that each such x . must be a subject

1

by Cond ition 4. Suppose x , fails to satisfy the claim and t t  is asso-

ciated with x ‘s incident edges. Then no rule . . of the form “z takes
1 J

~ to y) from x . ” is ever executed since x . has no out edges and it cannot

be assigned any . Furthermore , since v , the number of rules , is minimal,

no rules of the form “z takes (t to x . ) from x . “ or “x grants
1 i—l i—i

Ct to x.) to z” are ever executed since no use could be made of the t
2.

right thus assigned ; a similar situation holds for x~~ 1 transmitting its

t right to x . . Thus x . and its incident edges can be deleted violating

the connectedness Condition 4.

-- ~~- —~ --  - .— .-- - - i~
- 
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If is associated with x ’s incident edges, no rule c- . of the

form “ z grants ( ~ to y) to x. ” is ever executed since that right cannot

be transmitted by x . and v is assumed minimal . As with the case there

is no need for any p .  to transmit the g right , so x .  can be eliminated and

thus the connectedness condition is v;-olated . The situation for the end

points is analogous. The claim follows.

Let y
1
,...,y~ be the tg-sink initiators. Then

are singleton sets. Moreover , each of these vertices is a member of its

adjacent access-sets. Thus, the other access-sets,

(i+k U) constitute a cover for G0. The theorem follows . -

Some discussion is in order. Basically , edges can be transmitted

by an initiator to any vertex in its access set. Edges are passed “along

the path” because access sets will overlap. If one initiator can take

from the common element and the other can grant to it, then edges can

move from one access set to the next. But if the common vertex is a

tg-sink , then it must aid in the communication .

Next ~e establish a matching upper bound , but first a lemma will

simpli f y matters.

2 : Let x~~, . - . ,x be a tg-connected path and

A(y
1
)
~~

.. .
~
A (
~~
) a minimal access—set cover ordered

by increasing indices of x ., . If y. 41 
—

~~
-—-- q then

there exists C’ such that y . q and all rules in

Ct— ~~~
‘ are init iated by y~ , y~~1

, and perhaps,

their conunon element.

Proof: Let z A C y . )  P A ( y
~+1

) .  Consider the spans to z from

y. and y~~ 1. The notation “take r” means “perform enough takes to

acquire” right r.

-~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- .
~~ 

—
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--
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span from span from
to z 

~i+l 
to z rule sequence

(6.4) teritinal(t ) terminal (t ) z is necessarily a subject, since t t
isn ’t a bridge.

(a) z creates (tg to) new n,

(b) y~~1 
takes* (g to n) from z via

elements of the span,

(c) 
~~~ 

grants (a to q) to n

(d) y1 takes* (cx to q) from n.

(6.5) terminal(t ) initial(gt ) (a) y~~1 
takes* (g to z) from elements

of the span,

(b) 
~i+l 

grants (a to q) to z,

(C) takes (a to qj from a.

(6.6) initial(t g) termirial(t ) (a) y. creates (tg to) new n,

(b) y. takes* (g to z) from elements of

the span,

(c) y. grants (g to n) to z,

(d) y~~~ takes* (g to n) from z via elements

of the span,

(e) y~~1 
giants (cx to q) to n,

~~ takes (cx to q) from n.

.4 * 4.4 4~ *(6.7) initia1~t g) initial(gt ) z is necessar2ly a subject since t ggt isn ’t a bridge .

(a) y. creates (tg to) new n ,

(b) y. takes* (g to z) from elements of

span,

Cc) y. grants (g to n) to z,

(d) y~~1 
grants (r~ to q) to z via elements

of span,

Ce) z grants (a to q) to n,

(f) y1 takes (cx to q) from n.

Except for (6.4a) and (6.7e) the vertices initiating the rules are

either y
~ 

or 
~i+l

• 0

_______ _____________

-
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.orc~ iary 6. 3 :  For adjacent access sets A (y.) and

a rights to q can be transferred from y~~1 
to y. with no

other initiators unless there are consecutive edges labeled
-P4- -P4-
ttor gg. In this case, one additional operation initiated
by z = A (y.) n A(y .

÷1
) is sufficient.

Let cczn~slzare(a,p,q,G 0) hold via the tg-connected path p = x
0
,.. .,x

= s and let A(y
l
)
~~
...

~
A(y

k
) be a minimal access-set cover. Let 2. be the

number of tg—sinks .

Theorem 6.4: For p to acquire a rights to q, k+2. initiators
suffice.

Proof’: Clearly , p € A(y
1
), s € A (y

k
). If ~ = 

~k 
then q.

0

~~ ~k 
terminally spans tc- s, then takes* (cx to q) from S via elements

of span. If initially spans to s, then s is necessarily a subject

by conditions of can•ahare and rules (6.5a-b) (with S = y~~~ and

= z) suffice to transfer (a to q) to In all three cases 
a 

~ q

and we have a basis step. Lemma 6.2 can now be inductively applied , and

y a - q. If y
1 

p we are done. If y1 initially spans to p then

y
1 

takes* (g to p) from elements of the span and it grants (a to q) to

p. If y
1 terminally spans to p then p is necessarily a subject by

conditions on can•share and (6.4a—c) (with p = z, i = 0) suffice to

transfer (c. to q) to p. (Note, use of (6.4a) implies the addition of

another initiator , namely p, but this is counted in the definition of

tg—sink . The case is similar for use of (6.Sa—b) by above.)

7. Conap iracy in genera l grap ha

Although the theorems of the last section give an exact measurement

of the number of initiators required for sharing, they only apply to paths.

____  -- .- . -.-~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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In general, extending these results to graphs cannot be done simply by

coking for vertex disjoint paths. For example, if G is the graph

~ O4—~- 0 -‘-0 ~ep S q
t

the (only) vertex disjoint path from p to s does not qualify as a legal

path for ~~ c-a~ are(a , p ,q ,G) to hold , even though the predicate is true.

Working from the earlier development we now present a finer analysis

appl icable to general graphs.

Recall that if v e A (x), the access set with focus x , there are

three possible conditions any subset of which v can satisfy : v is the

focus of A (x )  ( i . e . ,  v = x) ,  x initially spans to v or x terminally

spans to v. Each of these properties is said to be a reason for

•, € A (x)

-~iven a protection graph C with subject vertices x1
,.. .,x ,  we

will define a new graph , the c-~ns~ c rac~ ~r~z rc, H, determined by G.

H has vertices 
~
‘l’”’~ n 

and each y . has associated with it the access-

set A (x ). There is an undirected edge between y. and y. prov ded

(x ,x .) ~ ,? where ~ is called the deletion operation and is defined by:

~(x,x ’) return all elements in A (x) A (x ’) except th-~~e z
for which either (a) the only reason z ( A(x) is x
initially spans to z and the onl y reason z E A(x ’) is x ’
initially spans to a or (b) the only reason z ( A(x)
is x terminally spans to a and the only reason z E :.(x ’)
is x ’ terminally spans to z.

The graph thus constructed is called H. See the example in Figure 2.

Let H be constructed from G as just described . Define the sets

—- ~
_
~__ _ __

~ ii~ii —-—- — -;---- —.— -- - --~--- - - - - - -
~~“~~
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protection graph G

10

1 

2 

6 

~~~~~~~~~~~~~~~~~~ ll

3
8 7 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

$

conspiracy graph H

Figure 2: A protection graph and its induced conspiracy
graph .
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y = {y jx . = p or x . initially spans to p},

= {y jx . = s or x . terminally spans to s).

Then we will argue that the number of vertices on a shortest path from

an element y1 € y to an element y c y in H is the number of conspira-

tors necessary and sufficient to produce a witness to can•share(cx:p,q ,G ) .

Let js .p.~ denote the length of a shortest path between y1 and y .

First we must establish that the conspiracy graph captures the

notion of sharing.

Lertz’na 7 .1: Can .sha r e(a ,p ,q , G) is true if and only if some
€ y is connected to some y € y .

Proof: If the vertex z mentioned in the definition of 5 is restricted

to being an object element of A ( x . )  n A( x .) the lemma is easily proved from

Theorem 4.2 by observing that the islands of C form connected components

of y ’s in H and the edges between these components correspond to bridges.

(Deletion of object elements is obviously necessary in order to remove

false bridges of the form t t and t gg t .) Also , note that even with

subject deletions, if y
1 

and y are connec ted ~2- s sbare (a,p,q , G) is

true. So the remaining case is when ccn~Share(cx ,p ,q ,G) is true but

removal (by 5) of z from A(x .) n A(x,) prevents y
1 and y from being

connected. Let z be associated with y .  Note that since z is a focus

it has reason to be in A(x .) n A(z) and in A (z) n A(x .). Thus there
1 J

are edges in H between y. and and between y and y .. Thus, the

absence of an edge between y. and y. cannot prevent y1 
and y from being

connected, since there is a path between y. and y
~ 

in any case. 0

Notice from the proof that the effect of deleting subjects via S

is to prevent two foci, y. and y. from being directly connected when

~~~~- - ,~~ - - - -~~~~~
—-,
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their only connecting spans contain a tg-sink. By deleting such ver-

tices, we force y. and y . to be connected by a path of two edges --

a means of easily counting the tg-sirxk as a conspirator.

Theorem 7.2:  To produce a witness to can share(cz,p,q, G)
I s.p.~ conspirators are sufficient.

Proof: A simple induction on the spans corresponding to the edges

of the s.p. using Lemma 6.2 proves the result provided we observe the

following point. Since p,q,s are distinct and the y. on the s.p. are

distinct, all rules given in Lemma 6.2 can be performed provided the

foci of the access—sets are different from their common element(s).

By inspection of the rules of Lemma 6.2, whenever a focus and common

element coincide the rule whose application is prevented (by distinct-

ness of vertices for rule applications, Sec. 2) provides a right that

is already possessed (e.g., rule 6.Sc, y. = z) or it provides a right used

in the subsequent rule to acquire a right already possessed (e.g.,

rule 6.Sa and 6.5b, = z). In these cases the rule who~e application

is prevented is not needed. 0

Theorem 7.3: To produce a witness to can~sh are (a , p , q , G)
s.p.j conspirators are necessary .

Proof: Let y
1 

= z1,...,
z = y be vertices along a shortest path

from y
1 to y .  If there exist only vertex disjoint tg—connected paths

in G from z. to z. (l�i<u) then the z. are foci of an access-set cover
1 i+l 1

for the path. By construction there are no tg-sinks and if y 1

not associated with p (resp. y not associated with s) then the subject

associated with y
1 

(y) initially (terminally) spans to p (s) and so it

need not conspire. By theorem 6.1, u conspirators are necessary .

~ 
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The remaining case is for an induced path that is not vertex dis-

joint. Although redundant rule applications may arise , it is clear that

duplicated ver tices along a span are not harmful to the lemma unless they

reduce the number of required conspirators. Suppose that conspirators

z ,...,z. ,z. ,...,z can produce a witness. Then there is a
1 i—l i+l u

w A(z . ) ~ A(z . ) .  But by choice of the z. ver tices on a shortes t
i—i i+l 1

path there is no edge between z. and z . . Thus , w ~ z , , w ~ z .i—i i+l i— ] ~ i+l

and w g 5 (z 11 z. ÷1). But this implies (if w is an object) that there

is no bridge between z~~ 1 and (contradicting by Lemma 7.1 the

assumption z
1
,...,z

1
,z

÷1
,...,z are sufficient) or it implies (if w

is a subject) the presence of a tg—sink . By Theorem 6.1 w must be —

counted as a conspirator . 0

~~~~~~~~~~ Remarks

The development of the conspiracy results provides a reasonably

clear picture of how sharing is accomplished in the Take—Grant Model.

In particular , the notion of access-set describes that portion of a

protection graph under direct “control” of the subject which is its

focus. Communication outside of this region of influence requi~ es

the cooperation of other subjects . This information will doubtless be

useful for designers of specific protection systems as explained in 4T.

Several problems remain open. First, there ~s the ques tion of

algorithmic complexity of determining the minimum number of conspirators

required for a right to be shared. In Section 7 this is determined by

finding a shortest path in a conspiracy graph. That question is obviously

a linear time process, but the construction of a conspiracy graph (as

described ) requires n2 operations for an n subject graph just to fill

_ _ _ _  - - - . - -—~~~~~~~~~~~~~~~~ - - -
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in the edges. A simpler scheme that does not depend on the explicit

construction of the conspiracy graph could be envisaged.

Another issue is to determine for a given graph wha t ~-~t of conspira-

tors must have participated in the sharing of a right after the fact.

The test is complicated by the fact that certain rights could have been

removed in order to hide the conspiracy . One might be able to infer

$ 

from the structure of the graph that even though a subject has deleted

the conspiratorial rights , they once existed .

~2 : J ~’ ener2t: Thanks are due to Matthew Bishop for usethl conversations
concerning conspiracy and Michele Boucher for exper t prepara tion of the
manuscript.
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